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ABSTRACT

Context.
Aims. It is well demonstrated that thermal misbalance, arising from the discrepancy between optically thin radiative energy loss and
heating energy gain, disrupts the adiabatic nature of solar corona plasmas, directly affecting the propagation of slow magnetoacoustic
waves. However, the extent to which this thermal misbalance, acting as a dispersion factor of an arbitrary intensity, influences the
use of slow modes as seismological tools and affects sausage and kink harmonic modes within a magnetic plasma flux tube, remains
unresolved.
Methods. This study investigates the dispersion of magnetohydrodynamic waves influenced by thermal misbalance in a cylindri-
cal configuration with a finite axial magnetic field within solar coronal plasmas. Specifically, it examines how thermal misbalance,
characterized by two distinct timescales directly linked to the cooling and heating functions, influences the dispersion relation. This
investigation is a key approach for understanding non-adiabatic effects on the behaviour of these waves.
Results. The analysis explores the impact of non-adiabatic effects due to classical thermal misbalance, where the heating and cooling
timescales vary across a range of values corresponding to each magnetohydrodynamic mode. The dispersion relation for magneto-
hydrodynamic waves propagating through a magnetic plasma tube, aligned with a finite magnetic field, is calculated under coronal
conditions in the linear regime.
Conclusions. Our findings reveal that the effect of thermal misbalance on fast sausage and kink modes, consistent with previous
studies on slabs, is small but slightly more pronounced than previously thought. The impact is smaller at long-wavelength limits but
increases at shorter wavelengths, leading to higher damping rates. This minor effect on fast modes occurs despite the complex interac-
tion of thermal misbalance terms within the dispersion relation, even at low-frequency limits defined by the characteristic timescales.
Additionally, a very small amplification is observed, indicating a suppressed damping state for the long-wavelength fundamental fast
kink mode. In contrast, slow magnetoacoustic modes are significantly affected by thermal misbalance, with the cusp frequency shifting
slightly to lower values, which is significant for smaller longitudinal wavenumbers. This thermal misbalance likely accounts for the
substantial attenuation observed in the propagation of slow magnetoacoustic waves within the solar atmosphere. The long-wavelength
limit leads to an analytical expression that accurately describes the frequency shifts in slow modes due to misbalance, closely aligning
with both numerical and observational results.

Key words. Thermal misbalance – MHD waves – Solar Corona

1. Introduction

Magnetohydrodynamic (MHD) waves are fundamental to both
experimental and astrophysical plasma physics, and many phe-
nomena observed in the solar atmosphere are attributed to
their influence. It is well theorized that these waves play
a crucial role in the transfer of energy from the lower to
the upper layers of the solar atmosphere, offering a key ex-
planation for coronal heating (see e.g. McIntosh et al. 2011;
De Moortel & Browning 2015; Khomenko & Collados 2015;
Van Doorsselaere et al. 2020). Moreover, MHD waves serve as
natural seismological tools, providing valuable insights into the
physical properties of solar plasmas (Liu & Ofman 2014) (for
a recent review see e.g. Nakariakov et al. 2024). They are also
implicated in the acceleration of solar winds (Cranmer 2012;

Vasheghani Farahani et al. 2021), and their non-linear effects
may contribute to the geometry of solar phenomena such as col-
limation of coronal jets (Vasheghani Farahani & Hejazi 2017).

A key manifestation of MHD waves in the solar atmosphere
is through magnetoacoustic (MA) modes, classified by their
symmetry properties such as sausage and kink waves, which
manifest in both fast and slow modes as fundamental examples
of MHD wave phenomena. These modes are characterized by
distinct oscillation patterns, frequencies, and phase speeds along
magnetic structures, and have been widely observed in vari-
ous solar structures, including coronal loops, jets, and promi-
nences (Nakariakov et al. 1999; Van Doorsselaere et al. 2008;
Dorotovič et al. 2014; De Moortel et al. 2015; Moreels et al.
2015a; Nakariakov & Kolotkov 2020). The deviation from ther-
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mal equilibrium caused by MHD waves, leading to enhanced
plasma heating over cooling in the upper layers of the so-
lar atmosphere through various damping mechanisms, has
been extensively studied (for a comprehensive review, see
Van Doorsselaere et al. 2020). Conversely, the heating can influ-
ence the dynamics of MHD waves, detectable through a broad
range of spectroscopic observations, from microwave to X-ray
emission lines (Kolotkov et al. 2019). The observation of MA
waves in the solar atmosphere serves as an effective seismo-
logical tool, where the wave properties —such as propagation
speeds, periods, amplitudes, and damping times— enable the
determination of essential plasma parameters, including density,
temperature, magnetic field strength, and heating function. Sev-
eral theoretical and observational studies have highlighted the
potential of MHD seismology to reveal physical properties of
solar atmospheric plasmas (Andries et al. 2009; Verwichte et al.
2009; Kolotkov et al. 2020; Nakariakov et al. 2021).

Slow MA waves, whether propagating or standing, are fun-
damental components of the MHD wave spectrum observed and
theorized in the solar atmosphere. These waves are detected via
Doppler shifts or intensity oscillations in microwave, extreme-
ultraviolet (EUV), and X-ray emission bands (Nakariakov et al.
2000c, 2019; Wang et al. 2021). Due to their ubiquitous pres-
ence and relative ease of detection compared to other MHD
waves, they have attracted considerable attention as diagnostic
tools for probing solar plasma characteristics (Wang et al. 2003;
Nakariakov & Verwichte 2005; de Moortel 2009). One notable
example of slow MA waves is the so-called SUMER oscilla-
tions, named after observations by the Solar Ultraviolet Mea-
surements of Emitted Radiation (SUMER) instrument on board
the Solar and Heliospheric Observatory (SoHO) (Wang et al.
2002; Wang 2011). These oscillations, also often observed with
instruments such as the Interface Region Imaging Spectrograph
(IRIS) (Li et al. 2017), manifest as rapidly damped, standing,
slow-mode oscillations. They are commonly characterized by
periodic or quasi-periodic fluctuations in temperature and den-
sity within hot coronal loops, providing crucial insights into the
physical processes governing solar dynamics.

A particularly interesting aspect of wave behaviour that
can significantly influence the propagation characteristics of
MA modes, including their damping and amplification within
magnetic flux tubes, lies in the role of thermal misbalance,
a non-adiabatic process resulting from the disparity between
the timescales of heating and radiative cooling perturbations in
the plasma. The phenomenon of thermal instability in plasma,
first studied by Field (1965), revealed that thermal equilib-
rium can be inherently unstable in a uniform medium, lead-
ing to the formation of condensations of a higher density and
lower temperature. This study provided foundation under how
thermal instability operates under a wide range of conditions,
influencing not only solar phenomena but also broader as-
trophysical structures such as planetary nebulae and interstel-
lar mediums. Earlier studies on thermal misbalance, such as
those done by Nakariakov et al. (2000a), Kumar et al. (2016),
Kolotkov et al. (2019), and Zavershinskii et al. (2019), further
developed the understanding of wave-induced thermal misbal-
ance under the approximations of infinite magnetic field and
weak non-adiabaticity, highlighting its effects on the evolution
of slow MA waves.

Recent studies have shown that slow MA waves, particu-
larly in solar coronal loops, are strongly influenced by thermal
misbalance. This misbalance causes wave amplification, atten-
uation, and dispersion, depending on the dominant thermody-
namic processes in the plasma. Observations have shown that

slow MA waves undergo frequency-dependent damping, which
traditional damping theories fail to explain. This opens the possi-
bility for using thermal misbalance to diagnose unknown coronal
heating mechanisms through detailed seismological analysis of
wave properties (Nakariakov et al. 2017; Kolotkov et al. 2019;
Kolotkov & Nakariakov 2022). In both propagating and standing
MA waves, heating-cooling misbalance can result in different
damping regimes, oscillatory patterns, and even wave amplifi-
cation, depending on the plasma conditions (Zavershinskii et al.
2019; Belov et al. 2020; Kolotkov et al. 2020; Agapova et al.
2022). This has led to ongoing efforts to better understand how
wave properties such as phase shifts, group speeds, and damping
lengths are affected by both the plasma’s non-adiabatic processes
and its magnetic structuring (Kolotkov et al. 2021; Prasad et al.
2022; Ibañez & Ballester 2022).

However, the solar corona is a complex environment where
the infinite magnetic field approximation is not universally ap-
plicable. Variations in magnetic field strength, as reported in the
works by Afanasyev & Nakariakov (2015) and Nakariakov et al.
(2017), suggest that the assumption of an overwhelmingly dom-
inant magnetic pressure may not always hold. Thus, it becomes
crucial to explore scenarios where the magnetic field strength
is finite, corresponding to non-zero plasma-β conditions, and to
assess their impact on wave dynamics. This consideration is par-
ticularly relevant since coronal heating, believed to be primar-
ily driven by magnetic fields, can have its efficiency modulated
by the field strength itself, consequently affecting the thermal
misbalance and the associated behaviour of MHD waves (e.g.
Duckenfield et al. 2021). Building on this, Kolotkov et al. (2019,
2020) presented compelling evidence of rapidly decaying slow
MA waves due to thermal misbalance observed in hot coronal
loops, demonstrating its potential for constraining the coronal
heating function through observed damping rates of slow modes.
These studies further conclude that coronal plasmas, in all sce-
narios, should always be regarded as an active medium, powered
by thermal misbalance and engaged in a continuous exchange of
energy with MHD waves (Kolotkov et al. 2021).

In addition to affecting slow MA waves, thermal misbal-
ance also influences other MHD wave modes, including Alfvén
waves. These waves are subject to non-linear effects due to
the interaction of torsional and shear Alfvén waves with the
surrounding plasma. Studies have shown that the induced lon-
gitudinal velocity perturbations in such waves are modulated
by thermal misbalance, with the effect being more pronounced
in shear waves than torsional ones (Belov et al. 2022). Fur-
thermore, the back-reaction caused by the perturbed thermal
equilibrium in the solar corona results in thermal instabilities,
which play a key role in the formation of fine thermal struc-
tures in coronal loops (Kolotkov et al. 2023). These instabili-
ties are stabilized to some extent by thermal conduction, es-
pecially in hot active regions, but the sensitivity of slow wave
stability to coronal heating functions presents an opportunity
for further seismological diagnostics (Zavershinskii et al. 2023;
Ballester et al. 2024). Overall, this demonstrates the effect of
thermal misbalance on MHD wave dynamics and highlight its
importance in constraining coronal heating mechanisms and ex-
plaining solar atmospheric behaviour (Kolotkov & Nakariakov
2022; Riashchikov et al. 2023).

The implications of these findings are significant, poten-
tially resolving long-standing discrepancies in the observed
frequency-dependent damping of slow MA waves in various
coronal structures, as reported by Mariska (2006), Gupta (2014),
Krishna Prasad et al. (2014), Krishna Prasad et al. (2018), and
Kolotkov & Nakariakov (2022). Numerical studies have demon-
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strated that damping lengths vary with wave periods (Gupta
2014; Mandal et al. 2016). Furthermore, Arregui et al. (2023)
highlighted the importance of considering both thermal conduc-
tion and thermal misbalance in explaining the damping of slow
MA waves in hot coronal loops. The consideration of thermal
misbalance as a damping mechanism may reconcile observed
phase shifts between density and temperature, as well as the
growth of the poly-tropic index, with the theoretical predictions
done by Owen et al. (2009), Van Doorsselaere et al. (2011), and
Krishna Prasad et al. (2018). Additionally, Kolotkov (2022) ex-
plored the use of slow wave seismology to compare the effects of
weak and strong thermal conduction, aiming to derive a more ac-
curate value for the effective adiabatic index in coronal plasma.

In this study, we develop an analytical model to investigate
the impact of thermal misbalance in none zero plasma-β on a
spectrum of MHD modes in coronal magnetic structures, us-
ing coronal seismology as a tool to refine the understanding of
the heating function. The MHD modes analysed in this research
cover a range of phase speeds, from fast to slow MA waves,
propagating within solar magnetic cylinders. By expanding the
non-adiabatic linear dispersion relation to the long wavelength
limit, we aim to provide deeper insight into the damping times of
slow MA waves in the solar corona and the dependence of wave
damping on the heating and cooling functions. The context of the
present study and its associated model are inspired by a series of
works by Edwin & Roberts (1983), van der Linden & Goossens
(1991), Ireland et al. (1992), and Kolotkov et al. (2019), to ad-
vance the field by incorporating the geometrical constraints of
a cylindrical configuration with consideration of finite magnetic
field, resulting transversal structuring, alongside the influence of
thermal misbalance of arbitrary intensity, which are intrinsic to
the solar coronal environment.

2. Governing equations and dispersion relation

We consider a magnetic cylinder in a uniform medium character-
ized by equilibrium finite magnetic field B

0
= (0, 0, B

0
), pressure

p
0
, and density ρ

0
. Our analysis employs the ideal MHD equa-

tions while also considering the influence of thermal misbalance
between heating and optically thin cooling radiation:

ρ[
∂v

∂t
+ (v.∇)v] = −∇p +

1

4π
(∇ × B) × B, (1)

∂ρ

∂t
+ ∇.(ρv) = 0, (2)

∂B

∂t
= ∇ × (v × B), (3)

p =
k

B
ρT

m
, (4)

ργ

γ − 1

d

dt
(

p

ργ
) = −ρQ(ρ, T ), (5)

∇ · B = 0, (6)

where, Q(ρ, T ) represents the discrepancy between the heating
and the radiative cooling processes, defined as L(ρ, T )− H(ρ, T )
(Parker 1953). The cooling function, L(ρ, T ), and the heating
function, H(ρ, T ), are both expressed as general power-law func-
tions of density and temperature as below, with unspecified ex-
ponents, each of which must be independently determined for
different regions within the solar atmosphere,

L(ρ, T ) = χρT β, H(ρ, T ) = hρaT b. (7)

The optically thin radiative cooling function, L(ρ, T ), is read-
ily determinable, thanks to the CHIANTI atomic database (since
Dere et al. 1997). In this study, we employed the latest version,
10.1 (Dere et al. 2023), to calculate the temperature exponent,
β, and the coefficient χ in the cooling function. Regarding the
unspecified heating function, it is necessary to consider the con-
straints governing the values of the power-law exponents a and
b (Kolotkov et al. 2020). Assuming an isothermal initial equilib-
rium, we set Q(ρ

0
, T

0
) = 0, which is essential for determining the

coefficient of h in the heating function. It is noteworthy that some
heating mechanisms may exhibit time-varying components on
very short timescales (Reale 2016) or dependence on the mag-
netic field (Duckenfield et al. 2021). In this study, we adopt a
non-specified model for both heating and cooling functions. Our
primary objective is to develop a descriptive model to understand
how arbitrary forms of thermal misbalance functions, each char-
acterized by its own timescales, influence MHD modes within a
magnetic cylindrical waveguide. While this approach may lead
to precise forms of the heating function, such details are beyond
the scope of this article.

At this point, it is important to note that both the general
heating and cooling functions depend on density, and the heat-
ing coefficient, h, is directly linked to the background density
profile, ρ0, where under realistic solar atmospheric conditions,
should be considered stratified. Consequently, assuming a uni-
form background plasma may be inaccurate, and the effects of
stratification should be incorporated into our mathematical mod-
els. However, it is essential to recognize that the MA waves, par-
ticularly slow MA waves considered in this study, are character-
ized by compressive oscillations and represent the MHD modes
significantly influenced by thermal non-adiabaticity in the so-
lar corona (Zavershinskii et al. 2019; Kolotkov et al. 2019, 2020;
Agapova et al. 2022). These waves exhibit wavelengths ranging
from a few thousand to several tens of thousands of kilome-
tres. Notably, this range is much smaller than the length scale of
stratification, which reaches a minimum value of approximately
50 Mega-metres (Nakariakov et al. 2000b; Andries et al. 2005).
Therefore, the assumption of a uniform medium remains justi-
fied.

Upon linearizing the governing equations by introducing
small amplitude perturbations to each physical parameter around
the initial equilibrium, we focus on the variable that represents
compressibility in the system (∇ · v) (Edwin & Roberts 1983).
This procedure results in a linear set of operators that govern the
physical characteristics of the system, as outlined below

(Ĝ + Q̂)∆ = 0. (8)

Let ∆ = ∇ · v, and the subsequent expressions represent each
operator:

Ĝ ≡ ∂2

∂t2

[
∂2

∂t2 − (V2
A
+ C2

s )∇2
]
+ V2

A
C2

s
∂2

∂z2∇
2,

Q̂ ≡ Qρ

[
ρ

0
(γ − 1) ∂

∂t
∇2

]

+Q
T

[
1

C
V

∂
∂t

(
∂2

∂t2 − V2
A
∇2 + V2

A
∂2

∂z2

)
− (γ − 1)T

0

∂
∂t
∇2

]
.

(9)

Each differential operator in Eq. (8) corresponds to a spe-

cific physical effect within the system. The operator Ĝ represents
the geometrical constraints accounted for in the dispersion rela-
tion, which can incorporate the cylindrical magnetic configura-
tion (see also Eq. (3a) in Edwin & Roberts 1983). The operator

Q̂ describes the effect of thermal misbalance between heating
and radiative cooling processes as well. For further details on
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(a)

(b)

Fig. 1. Dependence of dimensionless characteristic timescales, τ̄1 (a)
and τ̄2 (b), on temperature and wave period calculated using Eq. (11),
normalized by the wave period. This analysis considers a heating model
characterized by power indices a = −0.5 and b = −3 for density and
temperature, respectively.

the derivation of the mathematical expressions of the operators
in Eq. (9), refer to Appendix A.

In Eq. (9), VA and Cs represent the Alfvén and acoustic
speeds in the system, respectively. They are defined by the rela-

tions VA = B
0
(4πρ0)−1/2 and Cs =

√
γk

B
T

0
m−1, where B

0
is the

equilibrium magnetic field strength, ρ
0

is the background den-
sity, γ is the adiabatic index, k

B
is the Boltzmann constant, T

0

is the equilibrium temperature, and m is the mean particle mass.
Additionally, the specific heat capacity at constant volume, de-
noted as C

V
= (γ − 1)−1k

B
/m, is determined using the standard

adiabatic index (γ = 5/3). It is important to note that the poly-
tropic index of the system deviates from the standard adiabatic
index when non-adiabatic terms are included in the energy equa-
tion (Eq. (5)). Adjusting this index becomes necessary to account
for the effects on the index in subsequent calculations. However,
the focus of this analytical study is on the complex influence
of thermal misbalance on MHD waves, and therefore, this topic
is reserved for future investigation. For more detailed discus-
sions on the effective adiabatic index in coronal plasma, read-
ers are encouraged to refer to Van Doorsselaere et al. (2011),
Krishna Prasad et al. (2018), and Kolotkov (2022).

Moreover, in Eq. (9), We express the rate of change of the
heating-cooling function with respect to density at constant tem-
perature as Qρ, and with respect to temperature at constant den-
sity as QT , as follows:

Qρ ≡
∂Q

∂ρ
|
T
, Q

T
≡
∂Q

∂T
|ρ . (10)

In the thin flux tube approximation, neglecting parallel ther-
mal conduction reduces Eq. (10) in Kolotkov et al. (2021) to
Eq. (8). It is also deducible that neglecting the effect of ther-
mal misbalance in Eq. (8), results in the presence of only
the geometrical dispersion operator, reducing it to Eq. (3a) in
Edwin & Roberts (1983). At this point, it is noteworthy that if
we consider the governing equations in the absence of magnetic
effects (i.e. in the hydrodynamic limit) while accounting for ther-
mal conduction, the linearized perturbed equations (Eqs. (A.1,
A.2, A.4, A.5) in Appendix A) regenerate the forms of Eqs. (11-
14) in Field (1965). This ends up resulting in the dispersion re-
lation given by Eq. (15) in Field (1965), for an exponentially
propagating wave solution in an infinite, uniform medium.

By defining the characteristic timescales τ1 and τ2 as fol-
lows, it becomes possible to quantify the effects of cool-
ing and heating processes on MA waves, for instance, re-
garding attenuation, amplification, and phase speed changes
(Zavershinskii et al. 2019),

τ1 = γCV
/[QT −

ρ
0

T
0

Qρ] , τ2 = C
V
/QT . (11)

Additionally, in the infinite magnetic field approxima-
tion—where the background magnetic field is considered in-
finitely strong, allowing the perturbation of the magnetic fields
in the system to be assumed negligible —the geometrical dis-
persion effect on slow modes can be disregarded. In this sce-
nario, the governing equations are reduced to one-dimensional
forms along the ẑ axis. Therefore, incorporating the characteris-
tic timescale for thermal conduction, τcond, which is proportional
to the square of wavelength (see Zavershinskii et al. 2019), al-
lows for the reduction of Eq. (8) to Eq. (5) in Kolotkov et al.
(2019).

In this study, we focus on a segment of the magnetic flux
tube located within the coronal plasma, where the τcond is sig-
nificantly longer than the characteristic timescales associated
with thermal misbalance (Kolotkov et al. 2019). Moreover, due
to the location in the coronal region of the solar atmosphere,
we assume a uniform plasma temperature aligned with the back-
ground magnetic field, with a negligible background temperature
gradient. This assumption, widely adopted in theoretical coro-
nal plasma studies (e.g. Owen et al. 2009; Mandal et al. 2016;
Wang et al. 2018; Kolotkov et al. 2020), implies that, compared
to thermal misbalance, the effects of thermal conduction can be
neglected. This allows us to focus exclusively on the influence of
thermal misbalance on wave damping (pure thermal misbalance
case in Kolotkov et al. 2019).

In this context, it is where to introduce two dimension-
less characteristic timescales, obtained by normalizing τ1 and
τ2 by the wave period (P = 2π/ωr, ωr = Re(ω)), to account
for the thermal misbalance. These are defined as τ̄1 =

τ1

P
and

τ̄2 =
τ2

P
. The dependence of these characteristic timescales on

the wave period is significant, especially in scenarios where
thermal misbalance perturbation exhibits a wave-induced na-
ture (Zavershinskii et al. 2019; Kolotkov et al. 2019; Belov et al.
2021). Through introducing these two dimensionless period-
dependent timescales, the impact of thermal misbalance on a
wave, characterized by physical parameters such as frequency or
period, can be directly correlated with the wave’s susceptibility
to thermal misbalance.

Figure 1 illustrates the dependence of τ̄1 and τ̄2 on tempera-
ture and wave period. The cooling function is derived from the
CHIANTI database v. 10.1 for an equilibrium density (ρ0) of
2.3 × 10−15g/cm3, while the heating function is parametrized
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with power-law exponents a = −0.5 and b = −3. It is evident
that these characteristic timescales satisfy the conditions τ̄2 < τ̄1

and τ̄1−τ̄2 > 0, ensuring that thermal misbalance acts as a damp-
ing factor on MHD waves (Kolotkov et al. 2020). Furthermore,
the difference between the equilibrium densities of the exter-
nal and internal media may cause variations in the characteristic
timescales of thermal misbalance. However, this study assumes
that such discrepancies in equilibrium densities do not signifi-
cantly affect the characteristic timescales of thermal misbalance
within and outside the tube. Moreover, for waves with longer pe-
riods and environmental temperatures ranging from 1 to 5 MK,
as shown in Fig. 1, the values of τ̄1 and τ̄2 are minimized, and
vice versa.

Next, expressing the Laplacian operator in cylindrical coor-
dinates (r, θ, z) within the set of differential operators in Eq. (9)
as

∇2 ≡
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+
∂2

∂z2
. (12)

We adopt the Fourier exponential form to describe the solution’s
dependence on the coordinates and time as:

R(r) exp(ikz + imθ − iωt), (13)

where k, m, and ω represent the longitudinal wavenumber, az-
imuthal wavenumber, and wave frequency, respectively. Substi-
tuting this form into Eq. (8) leads to a Bessel equation for R(r)
as

d2R

dr2
+

1

r

dR

dr
− (κ2 +

m2

r2
)R = 0 . (14)

Here, κ represents the interior radial wavenumber and is a com-
plex function of wave frequency (ω) derived from the following
expression

κ
2 =

(k2C2
s − ω

2)(k2V2
A
− ω2) − iω2

2πτ̄2
( τ̄2

τ̄1
k2C2

s − ω
2)

(k2C2
T
− ω2)(C2

s + V2
A
) − iω2

2πγτ̄2
(C2

s + γV
2
A
)
. (15)

The tube speed, denoted as CT and expressed as

√
C2

s V2
A

C2
s+V2

A

, is

commonly referred to as the cusp speed (V
C
) (Roberts & Webb

1978). However, this study demonstrates that the cusp speed de-
viates from the tube speed due to the influence of non-adiabatic
effects within the system, corroborating earlier findings illus-
trated in Figs. (1) and (3) of Belov et al. (2021), where it is also
referred to as CT Q.

Assuming no energy exchange between the interior and exte-
rior of the magnetic flux tube implies that the oscillations within
the tube at the boundary are effectively isolated from external
energy sources or sinks. This isolation allows the oscillations
inside to be treated as independent of external drivers or damp-
ing effects. Consequently, we also arrive at a Bessel equation
with distinct Alfvén, sonic, and tube speeds for the exterior re-
gion. The solutions to these Bessel equations, while maintaining
continuity at r = R (the radius of the tube) and ensuring finite
solutions at both r = 0 and r → ∞, are then obtained by

R(r) =



Ain Jm(κ
in
r) r < R ,

Aout Km(κ
out

r) r > R ,

(16)

where Ain and Aout are complex constants, and under the con-
dition that κ2

in
= −κ2 > 0 (Edwin & Roberts 1983), Jm and Km

are the Bessel function of the first kind and the modified Bessel
function of the second kind, respectively, and κ

out
is the external

radial wavenumber, given by

κ
2
out =

(k2C2
se − ω

2)(k2V2
Ae
− ω2) − iω2

2πτ̄2
( τ̄2

τ̄1
k2C2

se − ω
2)

(k2C2
Te
− ω2)(C2

se + V2
Ae

) − iω2

2πγτ̄2
(C2

se + γV
2
Ae

)
, (17)

where CTe =

√
C2

seV2
Ae

C2
se+V2

Ae

represents the exterior tube speed. It is

worth noting that the radial wavenumbers in Eqs. (15, 17), as
the arguments of the Bessel functions, are complex expressions.
therefore, the real part of both Bessel functions Ym and Km meet
the condition for finite exterior solutions as the distance from the
flux tube boundary increases. However, we take the Bessel func-
tion Km as the solution for the external region to remain consis-
tent with the adiabatic limit. This limit corresponds to the char-
acteristic timescales τ1 and τ2 approaching infinity, thus recov-
ering the exterior solution in Eq. (7) of Edwin & Roberts (1983).
The dispersion relation is then obtained by examining the conti-
nuity of the radial velocity component and the total pressure at
the tube boundary (r = R), expressed as the following function:

Dm(ω) = (k2V2
A−ω

2)−
ρe

ρ
0

κin

κout

(k2V2
Ae−ω

2)
J
′

m(κinR)Km(κoutR)

Jm(κinR)K
′

m(κoutR)
= 0 .

(18)

This equation recovers Eq. (8b) of Edwin & Roberts (1983),
in the adiabatic limit. As evident in Eq. (18), the distinction
between surface and body modes within the tube is no longer
clear, as the radial wavenumbers κ

in
and κ

out
are complex num-

bers. This is leading to an intertwined state of surface and body
waves, where the solution to the Bessel equation inside the tube
(Jm(κinr)) becomes a combination of both modes.

Building on the findings of Agapova et al. (2022) concern-
ing the dynamics of fast and slow MA waves in plasma slabs af-
fected by thermal misbalance, and also supported by the results
presented in this study, it becomes obvious that the responses to
the dispersion relation are primarily dominated by body modes
rather than surface modes.

3. Long wavelength limit

For the case r
λ
≪ 1 or, in other words, for small values of the lon-

gitudinal wavenumber k, we can implement approximations for
Bessel functions with the small arguments as discussed in Sec-
tion 2. This allows us to derive an analytical expression that de-
scribes the effect of thermal misbalance on the MA modes within
the flux tube. In this section, mathematical expressions are cal-
culated for the axisymmetric (sausage) and the first azimuthal
harmonic (kink) modes.

It is important to note that all the numerical and analytical
solutions presented in this section are carried out under typi-
cal coronal conditions, where the interior Alfvén speed (VAi) is
assumed to be 1 Mm/s, the exterior Alfvén speed (VAe) is 1.5
Mm/s, the interior sound speed (Csi) is 0.15 Mm/s, and the ex-
terior sound speed (Cse) is 0.13 Mm/s. These parameter values
refer to the coronal conditions used in all figures throughout this
work.
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3.1. Fast sausage modes

In the case of zero azimuthal wavenumber (m = 0), the disper-
sion relation (Eq. (18)) takes the following form:

D0(ω) = (k2V2
A−ω

2)−
ρe

ρ
0

κin

κout

(k2V2
Ae−ω

2)
J1(κinR)K0(κoutR)

J0(κinR)K1(κoutR)
= 0 .

(19)

Figure 2 presents a numerical solution computed using MAT-
LAB to find the roots of the dispersion relation given by Eq. (19).
The plot depicts the fundamental MHD modes with phase speeds
faster than the internal Alfvén speed, which are classified as
fast MHD modes. As depicted in Fig. 2(a) (solid line), the fun-
damental fast sausage wave exhibits a cut-off in wavenumbers
at high frequencies with values exceeding the external Alfvén
frequency. This cut-off behaviour is an inevitable characteristic
of all fast sausage and fast non-fundamental kink modes in the
coronal region (Edwin & Roberts 1983). Consequently, for fast
MHD mode responses with frequencies or phase speeds surpass-
ing those of the external Alfvén’s, the solutions to the Bessel
equation in the exterior region manifest in cylindrical Hankel
function forms rather than Bessel K-function forms. This ob-
servation indicates that the waves would exhibit leaky forms of
propagation, and the dispersion relation Eq. (18) loses its valid-
ity in describing fast MHD modes with phase speeds exceeding
the external Alfvén speed (for an extensive discussion, refer to
Farahani et al. 2014). Furthermore, in light of a recent study into
the cut-offwavenumber observed in the context of sausage oscil-
lations within a slab configuration with varying external density,
it is advisable to consult Wang et al. (2023) as a supplementary
reference.

Hence, in this study, it is crucial to confine our analysis to
responses where the phase speed does not surpass the external
Alfvén speed to avoid compromising the validity of the disper-
sion relation, Eq. (18). Subsequent research on the effect of ther-
mal misbalance on leaky wave solutions could be pursued in fu-
ture research.

In the regime of long-wavelength sausage modes where the
argument of the Bessel functions is approaching to small values,
the dispersion relation Eq. (19) takes on an approximate form as

ρ
0
(k2V2

A
− ω2)

ρe(k2V2
Ae
− ω2)

≈
κ

2
in

R2

2

[
− ln

(
κout R

2

)
− γe

]
≈ −
κ

2
in

R2

2
ln(k R) .

(20)

Here we have taken the long-wavelength limit expansion of
the Bessel K-function, where |ln(kR)| ≫ 1. As evident from
the simplified dispersion relation (Eq. (20)), as k approaches
zero, κ2

in
diminishes much faster than ln(kR) approaches infin-

ity. Consequently, the dispersion relation only yields a solution
at the frequency equal to the internal Alfvén frequency (ωAi),
indicating that in the limit of small longitudinal wavenumbers,
the dispersion relation has no solutions for frequencies exceed-
ing the internal Alfvén frequency associated with fast sausage
modes. Consequently, the dispersion relation, Eq. (19), yields a
solution at the frequency corresponding to the internal Alfvén
frequency (ωAi), indicating that, in the limit of small longitu-
dinal wavenumbers, the dispersion relation lacks solutions for
frequencies exceeding the internal Alfvén frequency associated
with long wavelength fast sausage modes. Based on analyti-
cal results and referring to the numerical solution (Fig. 2, solid
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Fig. 2. In the coronal condition (VAe = 1.5,VAi = 1,Csi = 0.15,Cse =

0.13 Mm/s) and with τ̄1 = 6.8, τ̄2 = 2.4 (corresponding to approximate
values of 34 and 12 minutes for τ1 and τ2, respectively, at a temperature
of about 5 MK), the study considers a wave with a period of 5 min:
(a) numerical solution of the dispersion relation from Eq. (19) for fre-
quencies (phase speed) normalized by the internal acoustic frequency
(acoustic speed) (ωr/ωsi ≡ v

ph
/Csi) of the fast sausage fundamental

mode without (solid blue line) and with (solid black line) consideration
of the thermal misbalance effect, as well as the numerical solution of
the dispersion relation from Eq. (27) for the fast kink fundamental mode
(m=1) without (dashed blue line) and with (dashed black line) consid-
eration of the thermal misbalance effect versus the normalized longitu-
dinal wavenumber (kR). (b) Damping rate to frequency ratio (−γ/ωr)
of fundamental states of the fast sausage (solid line) and kink (dashed
line) modes with consideration of the thermal misbalance effect versus
the normalized longitudinal wavenumber (kR).

lines), the cut-off occurring in the range of small longitudi-
nal wavenumbers and frequencies between internal and external
Alfvén frequencies is a phenomenon more pronounced than the
ability to find solutions for frequencies even under the influence
of thermal misbalance on the fast asymmetric MHD modes, with
the cut-off effect remaining dominant. Therefore, in this limit,
it is impossible to find an analytical expression describing long
wavelength fast sausage modes.

Moreover, as evident from the numerical solution in Fig. 2(a)
(solid line), thermal misbalance exhibits no impact on the posi-
tion of cut-off wavenumber and minimal impact on the phase
speed of fast sausage modes. In Fig. 2(b) (solid line), the damp-
ing rate closely approaches that of the fast kink mode (dashed
line) after the cut-off wavenumber, with damping rate values be-
ing negligible, thus insignificantly influencing the overall be-
haviour of fast sausage modes, contrary to the slow sausage
modes studied in the next subsection.

3.2. Slow sausage modes

Slow MHD modes arise from the analysis of wave behaviour
approaching either the subsonic or sub-Alfvénic frequencies
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around the internal cusp frequency, denoted as ω
C
. When k2C2

T
−

ω2 = ǫ, and ǫ is a very small value, the interior radial wavenum-
ber Eq. (15) displays a singularity implying a resonance con-
dition in the absence of the thermal misbalance effect. At this
point, the cusp frequency is equal to the internal tube frequency
(ω

Ti
= k CTi), see Fig. 3(a) blue solid (slow sausage) and blue

dashed (slow kink) lines. However, the presence of thermal mis-
balance introduces a slight shift in the phase speed values de-
viated from the values obtained without considering the influ-
ence of thermal misbalance. This results in a complex-valued
cusp frequency that differs from the tube frequency in its real
part, while also introducing an imaginary part directly associated
with one of the characteristic timescales (τ̄2) connected to the
thermal misbalance effect (e.g. Fig. 3(a) black solid and dashed
lines). Subsequently, the cusp frequency undergoes modification
and can be obtained by examining the denominator of the inte-
rior radial wavenumber given by Eq. (15) for frequency values
that cause it to approach zero. In this study, the modified cusp
frequency is denoted by ω′

C
and expressed as

ω′
C

2
= ω2

T

1 +
i

2πγτ̄2

C2
s + γV

2
A

C2
s + V2

A


−1

, (21)

As an illustration, when considering a typical condition as-
sociated with coronal active regions and normalizing all system
speeds by the internal sound speed, the modified cusp speed (V ′

C
)

takes on a complex form, approximately 0.987339− 0.0324i for
timescales specified by values of τ̄1 = 6.8, τ̄2 = 2.4, whereas the
interior tube speed (CT ) under the same conditions is approx-
imately 0.988936. Consequently, the recalibration of the inte-
rior radial wavenumber (κin) with the utilization of this modified
cusp frequency is denoted by κ′

in
and rewritten as

κ
′
in

2
= −

(ω2
s − ω

2)(ω2
A
− ω2) − iω2

2πτ̄2
( τ̄2

τ̄1
ω2

s − ω
2)

(ω′
C

2 − ω2)
[
C2

s + V2
A
+ i

2πγτ̄2
(C2

s + γV
2
A
)
] , (22)

where ω2
s ≡ k2C2

s and ω2
A
≡ k2C2

A
.

To obtain the solution of the dispersion relation Eq. (19)
concerning frequencies in the vicinity of the modified cusp
frequency given in Eq. (21) under the long-wavelength limit
(k R → 0), we can employ a frequency expansion with the form

of ω2 ≈ ω′
C

2
[
1 + δ

0
k2R2 ln(k R)

]
as derived by Moreels et al.

(2015b). This expansion is applied on the case of m = 0, where
δ

0
represents a small deviation determined by the solution of the

dispersion relation around the modified cusp frequency. There-
fore, utilizing the frequency expansion and expressing in term of
phase speeds, Eq. (22) transforms to

κ
′
0in

2
R2 =

(C2
s − V ′

C

2)(V2
A
− V ′

C

2) −
iV ′

C

2

2πτ̄2
( τ̄2

τ̄1
C2

s − V ′
C

2)

δ
0
V ′

C

2 ln(k R)
[
C2

s + V2
A
+ i

2πγτ̄2
(C2

s + γV
2
A
)
] , (23)

V ′
C

2
=
ω′

C

2

k2
.

where V ′
C

is modified cusp speed. By substituting this expres-
sion into the dispersion relation Eq. (19) and applying stan-
dard approximations for Bessel functions, as outlined in deriving
Eq. (20), we obtain

D0(V ′
C
) = (V2

A − V ′
C

2
) +
ρe

ρ
0

(V2
Ae − V ′

C

2
)
κ
′
0in

2R2 ln(k R)

2
= 0 , (24)

By utilizing this expression and employing the frequency ex-
pansion used for slow sausage modes, the damping rate is ex-
pressed as

γ
damp
= Im

[
ω′

C

(
1 +

1

2
δ

0
k2R2 ln(k R)

)]
, (25)

Here, δ
0

is obtained by solving Eq. (24) and takes on a math-
ematical form of

δ
0
= −

ρe

2ρ0V ′
C

2


V2

Ae
− V ′

C

2

V2
A
− V ′

C

2



×


(C2

s − V ′
C

2)(V2
A
− V ′

C

2) −
iV ′

C

2

2πτ̄2
( τ̄2

τ̄1
C2

s − V ′
C

2)

C2
s + V2

A
+ i

2πγτ̄2
(C2

s + γV
2
A
)

 . (26)

In Figs. 3(d-f), numerical solutions (dashed black lines)
obtained by numerically solving Eq.18 for the axisymmetric
MHD modes with m = 0 are compared with analytical solu-
tions (solid black lines) derived from the frequency expansion

ω2 ≈ ω′
C

2
[
1 + δ

0
k2R2 ln(kR)

]
, where the parameters are obtained

from Eqs. (21, 26), and Eq. (25) for the fundamental state of
slow sausage modes. The comparison reveals a high degree of
consistency between the numerical and analytical solutions, par-
ticularly evident in the long-wavelength limit (small longitudinal
wavenumbers k), affirming the validity of our analytical expres-
sions.

3.3. Fast kink modes

Higher azimuthal harmonics (m > 0) of the dispersion relation
in Eq. (18) can take the form of

Dm(ω) = (k2V2
A − ω

2)

−
ρe

ρ
0

κin

κout

(k2V2
Ae − ω

2)

(
m
κinR

Jm(κinR) − Jm+1(κinR)
)

Km(κoutR)

Jm(κinR)
(

m
κoutR

Km(κoutR) − Km+1(κoutR)
)

= 0 , m > 0 . (27)

In the limit of long wavelength, the Bessel approximations
for small values of the longitudinal wavenumber (k) allow us to
rewrite Eq. (27) to a reduced form of

ρ
0
(k2V2

A
− ω2)

ρe(k2V2
Ae
− ω2)

≈
κ

2
in

R2

2m(m + 1)
− 1 , m > 0 . (28)

Subsequently, in the regime of small longitudinal wavenum-
bers where the interior radial wavenumber Eq. (15) approaches
zero, for non-zero azimuthal harmonic numbers (including m =
1 to describe kink modes), the following expression can be ob-
tained from Eq. (28):

ρ
0
(k2V2

A
− ω2)

ρe(k2V2
Ae
− ω2)

≈ −1 , (29)

which is only solved by the kink frequency of

ω2
k =
ρ

0
V2

A
+ ρeV2

Ae

ρ0 + ρe

k2 .
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Fig. 3. In the coronal condition and τ̄1 = 6.8, τ̄2 = 2.4: (a) numerical solution of the dispersion relation Eq. (18), computed by MATLAB, for the
frequency (phase speed) normalized by the internal acoustic frequency (acoustic speed) (Re(ω)/ωsi ≡ v

ph
/Csi) of the fundamental slow sausage

mode without consideration of the thermal misbalance effect (unaffected) (solid blue line) and with consideration of the thermal misbalance effect
(affected) (solid black line), as well as the fundamental slow kink mode unaffected (dashed blue line) and affected (dashed black line) by the
thermal misbalance versus the normalized longitudinal wavenumber (k R). (b) Damping rate to the frequency ratio (−γ/ωr) of fundamental states
of the affected slow sausage (solid line) and kink (dashed line) modes by the thermal misbalance versus the normalized longitudinal wavenumber
(k R). (c) Damping time to the wave period ratio (τd/P) of the affected slow sausage (solid line) and kink (dashed line) modes by the thermal
misbalance versus the normalized longitudinal wavenumber (kR). For comparison, the analytical results obtained by Eqs. (25, 32) are shown by
the black and blue solid curves in panels d, e, f.

It can be readily inferred from Eq. (28) that thermal misbal-
ance has no significant effect on fast either kink or higher az-
imuthal harmonic waves (m > 1) in the long wavelength limit.
The numerical analysis is also shown in Fig. 2 (dashed lines) for
fast kink modes that thermal misbalance has no impact on the
fundamental fast kink frequency (phase speed). However, a very
small decrement is observable for the damping rate in Fig. 2 (b)
(dashed black line) for small values of longitudinal wavenum-
bers which may be inferred as suppressed damping state of kink
oscillations (Agapova et al. 2022), and very interesting for fur-
ther research. In addition, a slight increase is observed for greater
values of longitudinal wavenumbers while the damping rate val-
ues are very small and negligible. The conclusion of no signifi-
cant impact is totally different for slow kink modes.

3.4. Slow kink modes

In the case of slow kink modes, the criterion for finding an ana-
lytical expression is similar to what was done in subsection 3.2
for slow sausage modes. The analytical expression for the damp-
ing rate is derived by employing the modified cusp frequency
(ω′

C
) defined in Eq. (21) and the rewritten form of the interior

radial wavenumber (κ′
in

) in Eq. (22). By setting the dispersion
relation Eq. (27) for the first azimuthal wavenumber (m = 1),
and employing the Bessel function approximations under the as-
sumption of k R ≪ 1, an approximate form of the dispersion re-
lation Eq. (27) describing the long wavelength slow kink modes
is obtained as follows
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D1(Vph) = (V2
A − V2

ph) +
ρe

ρ
0

(V2
Ae − V2

ph)

1 −
κ
′
in

2R2

4

 = 0 . (30)

where Vph =
ω
k

. Once again, similar to the slow sausage modes,
to analytically study the kink wave around the cusp frequency
in the long-wavelength limit, we need to employ a frequency
expansion. However, this time, it is specified for the case of m =

1 with the form of ω2 ≈ ω′
C

2(1 + δ
1
k2R2) (Edwin & Roberts

1983), where the small deviation δ
1

is obtained by solving the
dispersion relation Eq. (30) for the modified cusp speed (V ′

C
).

By utilizing the frequency expansion, the radial wavenum-
ber κ′

in
given by Eq. (22) for the modified cusp speed has the

following mathematical expression

κ
′
1in

2
R2 =

(C2
s − V ′

C

2)(V2
A
− V ′

C

2) −
iV ′

C

2

2πτ̄2
( τ̄2

τ̄1
C2

s − V ′
C

2)

δ
1
V ′

C

2
(
C2

s + V2
A
+ i

2πγτ̄2
(C2

s + γV
2
A
)
) , (31)

By replacing this expression into the dispersion relation

Eq. (30) instead of κ′
in

2R2, for the phase speed equal to V ′
C
, and

solving it for the deviation of δ
1
, an analytical expression for the

damping rate is obtained as follows

γ
damp
= Im

[
ω′

C

(
1 +

1

2
δ

1
k2R2

)]
, (32)

Where includes the deviation of δ
1

defining with the follow-
ing expression

δ
1
=


(C2

s − V ′
C

2)(V2
A
− V ′

C

2) −
iV ′

C

2

2πτ̄2
( τ̄2

τ̄1
C2

s − V ′
C

2)

4V ′
C

2
[
C2

s + V2
A
+ i

2πγτ̄2
(C2

s + γV
2
A
)
]



×

1 +
ρ0

ρe

V2
A
− V ′

C

2

V2
Ae
− V ′

C

2


−1

. (33)

The comparison in Figs. 3(d-f) reveals a high degree of con-
sistency between the numerical (dashed blue lines) and analyti-
cal (solid blue lines) solutions for the fundamental state of slow
kink modes, arisen from Eq. (27) (for transverse harmonic m=1)
and Eq. (33) respectively, particularly evident in the long wave-
length limit (small longitudinal wavenumbers k), and slight de-
viation observed for larger values of longitudinal wavenumbers,
affirming the validity of our analytical equation (Eq. (32)).

Finally, in Fig.4, we numerically analyse the behaviour of
slow sausage and kink waves and their associated damping char-
acteristics across varying periods of 3, 5, and 8 minutes. It is
observed that longer periods correspond to smaller values of τ̄1

and τ̄2, leading to enhanced damping rates. The analytical ex-
pressions in Eqs. (25, 32) also demonstrate this conclusion.

4. Conclusions

In this study, we investigated the propagation of MHD waves dis-
persed in a cylindrical waveguide and affected by non-adiabatic
factors, with thermal misbalance at the centre of focus. We char-
acterized the impact of thermal misbalance resulting from the de-
viation from thermal equilibrium in the coronal region between
heating and radiative cooling mechanisms, using two distinct di-
mensionless characteristic times τ̄1 and τ̄2. These times play a

crucial role in either attenuating or amplifying MHD wave am-
plitudes within a cylindrical magnetic waveguide in a coronal
uniform plasma. The characteristic times are directly linked to
the heating-cooling function Q(ρ, T ), the sole non-adiabatic term
considered in this analysis. We deliberately selected positive val-
ues for these timescales, ensuring that τ̄1 − τ̄2 > 0, aligning
with constraints consistent with the stronger damping (enhanced
damping) regimes identified in Kolotkov et al. (2020). The ensu-
ing results are presented as follows

1. The dispersion relation governing MHD modes in cylindri-
cal waveguides immersed in a uniform finite magnetic field
and subjected to the discrepancy between heating and radia-
tive cooling mechanisms was obtained. The impact of ther-
mal misbalance, as elucidated by two characteristic times
linked to the derivative of the heating-cooling function with
respect to density perturbation in constant temperature and
with respect to temperature perturbation in constant density,
initially introduced by Kolotkov et al. (2019), were normal-
ized by the MHD wave period. These normalized character-
istic timescales are employed to encapsulate the influence of
thermal misbalance properties on the radial wavenumber.

2. Both the analytical and numerical solutions in the limit of
fast MHD modes were obtained to show that thermal mis-
balance exhibits only a marginal impact on these modes
which stems from the consideration that, in high-frequency
regimes (ω ≫ 1/min{|τ1|, |τ2|}) (Nakariakov et al. 2017),
the influence of thermal misbalance on the damping rate re-
mains minimal and negligible, in consistency with the as-
sumption established firstly by Zavershinskii et al. (2019).
However, the slight decrement observed in the small lon-
gitudinal wavenumbers for the fundamental fast kink wave,
Fig. 2(b) (dashed line), may signify a suppressed damping
mode, which merits further investigation.

3. In the case of slow MHD modes within a magnetic tube, both
analytical and numerical results were obtained. Analytical
expressions in Eqs. (25, 32) governing the damping rates in
the long wavelength limit were derived for slow sausage and
kink modes respectively, demonstrating exemplary agree-
ment with the corresponding numerical results presented in
Fig. 3. The equations and figures collectively reveal that ther-
mal misbalance significantly impacts slow modes in com-
parison to fast modes. Furthermore, our analysis indicates
that the influence of thermal misbalance on slow MHD wave
propagation in the coronal conditions is more pronounced
in asymmetric modes than in axisymmetric ones. This result
opposes with the expected behaviour, as MA waves charac-
terized by higher compressibility exhibit greater sensitivity
to thermal misbalance. Figures 3(b)&(e) illustrate that the
damping rates for slow kink modes are higher than those
for slow sausage modes with the same period. This finding
suggests that thermal misbalance has a more substantial im-
pact on slow asymmetric MA modes than their axisymmetric
counterparts. In fast modes, as depicted in Fig. 2, a slight in-
verse relationship is evident. As a result, we can conclude
that the MA waves owning the faster phase speeds are less
affected than the slower ones by thermal misbalance.

4. In the investigation of either high-frequency (small period)
waves or elevated temperatures, an examination of the sur-
face plot Fig. 1 reveals that both normalized characteristic
timescales, denoted as τ̄1 and τ̄2, tend towards their maxi-
mum values. This observation suggests that, under the speci-
fied conditions which are subject to the heating model and
consequently the values considered for the parameters, a
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Fig. 4. In the coronal condition, the figure displays: (a), (b), and (c) the normalized numerical solutions of the dispersion relation Eq. (19) by the
internal acoustic speed (Cs) for sausage modes (m = 0) with different periods of 8 min (τ̄1 = 4.25, τ̄2 = 1.5) (solid line), 5 min (τ̄1 = 6.8, τ̄2 = 2.4)
(dashed line), and 3 min (τ̄1 = 11.34, τ̄2 = 4) (dotted line); and (d), (e), and (f): the normalized numerical solutions of the dispersion relation
Eq. (27) by the internal acoustic speed (Cs) for kink modes (m = 1) with different periods of 8 min (τ̄1 = 4.25, τ̄2 = 1.5) (solid line), 5 min
(τ̄1 = 6.8, τ̄2 = 2.4) (dashed line), and 3 min (τ̄1 = 11.34, τ̄2 = 4) (dotted line).

and b, in the heating function Eq. (7), the influence of ther-
mal misbalance on the dynamical behaviour of cylindrical
MHD modes is minimized. This is because the characteris-
tic timescales, in their respective maximum values, minimize
the imaginary part of the radial wavenumbers, as evident
from Eqs. (15 and 17). On the contrary, the diminution of
the characteristic timescales exerts a pronounced influence,
leading to an enhanced damping rate for MHD waves, par-
ticularly for slow modes. Moreover, as τ̄1 and τ̄2 exhibit a
correlation with the temperature of the active plasma region,
as observable in Fig. 1, the damping rates Eqs. (25, 32) con-
sequently demonstrate a correlated behaviour with tempera-
ture. In such a way, the damping rate decreases with rising
temperature and increases as the temperature decreases to the
1-5 MK range which is evident in Fig. 5 for transverse slow
oscillations as well.

Importantly, our analysis underscores the significance of τ̄2

over τ̄1. Especially, the heating-cooling function’s rate with
respect to temperature, encapsulated in τ̄2, plays a more

prominent role in shaping wave dynamics. This is particu-
larly evident as τ̄2 is the exclusive timescale in the denomi-
nator of the fourth power of wave frequency in the imaginary
parts of the radial wavenumbers (Eqs. (15) and (17)), and it
is the only characteristic timescale appearing in the cusp fre-
quency Eq. (21). Consequently, smaller values of τ̄2 signify
a more substantial impact of thermal misbalance.

5. As mentioned, the analytical damping rates of slow MHD
waves were determined in Eqs. (25) and (32), and the ob-
tained values were found to be comparable to their respective
wave periods, aligning well with observed characteristics. To
elucidate this relationship, we employed the analytical ex-
pression derived from Eq. (32), which describes the damp-
ing rate of slow transverse MA modes in a magnetic tube.
The results, as illustrated in Fig. 5, demonstrate that the frac-
tion of damping time per the period of the wave for SUMER
oscillations falls within the range of approximately 1.55 to
2.85 times the wave period at 6.3 MK and approximately
2.9 to 5.5 times the wave period at 8.9 MK, for a range of
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Fig. 5. In the coronal condition, for temperatures associated with
SUMER oscillations with periods of 15.7 minutes at 6.3 MK (τ̄1 ≈ 2.36,
τ̄2 ≈ 0.76) (dashed line) and 13.3 minutes at 8.9 MK (τ̄1 ≈ 4.89,
τ̄2 ≈ 1.43) (solid line), as calculated using the analytical expression
in Eq. (32), the figure depicts the ratio of the damping time to the wave
period (τd/P) of the affected slow transverse MA modes by the thermal
misbalance versus kR.

normalized longitudinal wavenumbers (kR) between 0 and
2. This finding is consistent with the observed rapid damp-
ing of slow modes, especially in the limit of long-wavelength
waves, substantiating the validity of the analytical model in
capturing the damping behaviour of the studied MHD waves.

6. Adjusting the thermal misbalance characteristic timescales,
τ̄1 and τ̄2, to match the observed ratio of rapidly damping
or amplifying times per the period of the oscillations in var-
ious layers of the solar atmosphere offers seismological in-
sights on plasma characteristics or mechanisms, for example,
plasma density or the heating function. It is also examinable
alongside other methods, especially in the context of identi-
fying the heating function. As an instance, in this study, we
demonstrated that the selected values for these timescales,
taken from the work of Kolotkov et al. (2019), show compat-
ibility with the damping times observed for the considered
SUMER oscillations, as shown in Fig. 5. This study propose
that gathering the values of these timescales consistent with
each oscillation provides a set of statistical data to specify
the heating function form with the more accurate values of
the heating function exponents of a and b in Eq. (7).

In conclusion, our current study has provided robust analyt-
ical and numerical evaluations of MHD modes in a cylindrical
configuration influenced by thermal misbalance. Building upon
this foundation, the next crucial steps involve extending our the-
oretical framework to incorporate other non-adiabatic terms, no-
tably thermal conduction and scalar resistivity. Given that ther-
mal conduction always acts as a damping for slow MA modes,
as demonstrated by Duckenfield et al. (2021), incorporating it
alongside thermal misbalance promises more precise estimates
for damping times, aligning closely with observed values.

Furthermore, the methodology and results presented in this
article can be replicated for alternative sets of thermal misbal-
ance characteristic times, shedding light on non-decaying, am-
plifying, and suppressed damping oscillations, aligning with the
states identified by Kolotkov et al. (2020). It is also valuable to
consider other physical parameters participating in the heating
function such as magnetic field (Duckenfield et al. 2021), and
study their effects on MHD modes inside a cylindrical waveg-
uide. These investigations can contribute to refining heating
function models governing magnetic structures within the solar
atmosphere.

An intriguing avenue for future research involves introducing
the concept of a resonant layer at the boundary between the in-
side and outside of solar tubes. Moreover, a differential operator,
similar to those defined for the geometrical constraint and ther-
mal misbalance effect in Section 2, can be introduced to describe
the impact of thermal conduction as an additional cooling pro-
cess alongside radiative cooling in the dispersion relation Eq. (8)
(Field 1965), and by incorporating the characteristic timescale
(τcond) related to thermal conduction (Kolotkov et al. 2019) in
the solar atmosphere, we anticipate more accurate predictions of
damping times for slow modes observed in this region.

Expanding our focus to include the non-linear evolution of
MHD waves in non-uniform plasmas, especially due to gravi-
tational stratification, promises exciting insights. Exploring the
impact of thermal misbalance on non-linear phenomena, such as
shock waves, becomes particularly relevant in understanding en-
ergy release processes in the solar atmosphere, unravelling the
heating mechanism. Among these, investigating the compress-
ible aspects of non-linear evolution of Alfvén waves, and their
response to thermal misbalance, especially when propagating
through inhomogeneous plasma and forming shock waves, or
how thermal misbalance influences force equilibrium, specifi-
cally its effects on the ponderomotive force, presents opportuni-
ties for further investigations.

Finally, it can be the best point to run simulations that play
a pivotal role in obtaining a more tangible understanding of how
non-adiabatic terms affect MHD waves within magnetic struc-
tures in the solar atmosphere. The implications derived from the
findings presented in this article and the proposed follow-up in-
vestigations significantly enhance our understanding of the intri-
cate dynamics that govern the solar corona, particularly concern-
ing its thermal characteristics.
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Appendix A: Derivation of the differential operators

in Eq. (9)

Considering the system at an initial magnetohydrodynamical
equilibrium and by applying small amplitude perturbations to
the governing equations (Eqs. (1-6)), their linearized forms are
derived, respectively, as follows

ρ
0

∂v
1

∂t
= −∇p

1
−

1

4π

[
∇(B

0
· B

1
) − (B

0
· ∇)B

1

]
, (A.1)

∂ρ
1

∂t
+ ρ

0
∇ · v

1
= 0, (A.2)

∂B
1

∂t
= −B

0
∇ · v

1
, (A.3)

p
1
=

k
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(
ρ
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0
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)
, (A.4)

1

γ − 1

(
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−
γp

0

ρ
0

∂ρ
1

∂t

)
= −ρ

0

[
ρ

1
QT + T

1
Qρ

]
, (A.5)

where, the first-order perturbed parameters are denoted by the
subscript 1, while the equilibrium quantities are denoted by the
subscript 0. For the definitions of the quantities Qρ and QT , refer
to Eq. (10). By substituting the first order magnetic field pertur-
bation (B

1
) in Eq. (A.1), using Eq. (A.3), we obtain

∂

∂t
∇2 p

1
= ρ

0

(
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A∇
2(∇ · v

1
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∂2

∂z2
∇ · v
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−
∂2

∂t2
∇ · v

1

)
, (A.6)

where VA = B
0
(4πρ0)−1/2 is Alfvén speed. The first order tem-

perature perturbation (T
1
) is also obtained by Eq. (A.4) as

T
1
=

1

ρ
0

(
m

k
B

p
1
− T

0
ρ

1

)
, (A.7)

Replacing the perturbed physical parameters in Eq. (A.5)
with their expressions from Eqs. (A.2, A.6, A.7) and rearrang-
ing the equation by ∇ · v

1
, we derive the following differential

equation (the subscript 1 is omitted):

∂2

∂t2

[
∂2

∂t2
(∇ · v) − (V2

A +C2
s )∇2(∇ · v)

]
+ V2
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A∇
2(∇ · v) + V2

A

∂2

∂z2
(∇ · v)

)

+ (γ − 1)T
0
Q

T

∂

∂t
∇2(∇ · v) . (A.8)

where Cs =
√
γk

B
T

0
m−1 and C

V
= (γ − 1)−1k

B
/m are acous-

tic speed and specific heat capacity at constant volume, respec-
tively. It is interesting to note when the context of study is fo-
cused only on the plasma with lack of thermal misbalance effect,
all the terms on the RHS of Eq. (A.8) disappear, and the outcome
aligns with Eq. (3a) of Edwin & Roberts (1983).
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